Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ecological and phenotypic diversity observed in oceanic island radiations presents an evolutionary paradox: a high level of genetic variation is typically required for diversification, but species colonizing a new island commonly suffer from founder effects. This reduction in population size leads to lower genetic diversity, which ultimately results in a reduction in the efficiency of natural selection. What then is the source of genetic variation which acts as the raw material for ecological and phenotypic diversification in oceanic archipelagos? Transposable elements (TEs) are mobile genetic elements that have been linked to the generation of genetic diversity, and evidence suggests that TE activity and accumulation along the genome can result from reductions in population size. Here, we use the Hawaiian spiny-leg spider radiation (Tetragnatha) to test whether TE accumulation increases due to demographic processes associated with island colonization. We sequenced and quantified TEs in 23 individuals representing 16 species from the spiny-leg radiation and four individuals from its sister radiation, the Hawaiian web-building Tetragnatha. Our results show that founder effects resulting from colonization of new islands have not resulted in TE accumulation over evolutionary time. Specifically, we found no evidence for an increase in abundance of specific TE superfamilies, nor an accumulation of ‘young TEs’ in lineages which have recently colonized a new island or are present in islands with active volcanoes. We also found that the DNA/hAT transposon superfamily is by far the most abundant TE superfamily in the Tetragnatha radiation. This work shows that there is no clear trend of increasing TE abundance for the spiny-leg radiation across the archipelago chronosequence, and TE accumulation is not affected by population oscillations associated with island colonization events. Therefore, despite their known role in the generation of genetic diversity, TE activity does not appear to be the mechanism explaining the evolutionary paradox of insular diversification in the Tetragnatha spiny-leg radiation.more » « less
-
Abstract The dynamic structure of ecological communities results from interactions among taxa that change with shifts in species composition in space and time. However, our ability to study the interplay of ecological and evolutionary processes on community assembly remains relatively unexplored due to the difficulty of measuring community structure over long temporal scales. Here, we made use of a geological chronosequence across the Hawaiian Islands, representing 50 years to 4.15 million years of ecosystem development, to sample 11 communities of arthropods and their associated plant taxa using semiquantitative DNA metabarcoding. We then examined how ecological communities changed with community age by calculating quantitative network statistics for bipartite networks of arthropod–plant associations. The average number of interactions per species (linkage density), ratio of plant to arthropod species (vulnerability) and uniformity of energy flow (interaction evenness) increased significantly in concert with community age. The index of specialization has a curvilinear relationship with community age. Our analyses suggest that younger communities are characterized by fewer but stronger interactions, while biotic associations become more even and diverse as communities mature. These shifts in structure became especially prominent on East Maui (~0.5 million years old) and older volcanos, after enough time had elapsed for adaptation and specialization to act on populations in situ. Such natural progression of specialization during community assembly is probably impeded by the rapid infiltration of non‐native species, with special risk to younger or more recently disturbed communities that are composed of fewer specialized relationships.more » « less
-
DNA metabarcoding is a popular methodology for biodiversity assessment and increasingly used for community level analysis of intraspecific genetic diversity. The evolutionary history of hundreds of specimens can be captured in a single collection vial. However, the method is not without pitfalls, which may inflate or misrepresent recovered diversity metrics. Nuclear pseudogene copies of mitochondrial DNA (numts) have been particularly difficult to control because they can evolve rapidly and appear deceptively similar to true mitochondrial sequences. While the problem of numts has long been recognized for traditional sequencing approaches, the issues they create are particularly evident in metabarcoding in which the identity of individual specimens is generally not known. In this issue ofMolecular Ecology Resources, Andújar et al. (2021) provide an easy to implement bioinformatic approach to reduce erroneous sequences due to numts and residual noise in metabarcoding data sets. The metaMATE software designates input sequences as authentic (mtDNA haplotypes) or nonauthentic (numts and erroneous sequences) by comparison to reference data and by analysing nucleotide substitution patterns. Filtering is applied over a range of abundance thresholds and the choice to proceed with a more rigid or less strict sequence removal strategy is at the researchers’ discretion. This is a valuable addition to a growing number of complementary tools for improving the reliability of modern biodiversity monitoring.more » « less
An official website of the United States government
